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Abstract. Heterogeneous, "aggregated" patterns in the

spatial distributions of individuals are almost universal

across living organisms, from bacteria to higher vertebrates.

Whereas specific features of aggregations are often visually

striking to human eyes, a heuristic analysis based on human

vision is usually not sufficient to answer fundamental ques-

tions about how and why organisms aggregate. What are the

individual-level behavioral traits that give rise to these

features? When qualitatively similar spatial patterns arise

from purely physical mechanisms, are these patterns in

organisms biologically significant, or are they simply epi-

phenomenu that are likely characteristics of any set of

interacting autonomous individuals'* If specific features of

spatial aggregations do confer advantages or disadvantages

in the fitness of group members, how has evolution operated

to shape individual behavior in balancing costs and benefits

at the individual and group levels? Mathematical models of

social behaviors such as schooling in fishes provide a prom-

ising avenue to address some of these questions. However,

the literature on schooling models has lacked a common
framework to objectively and quantitatively characterize

relationships between individual-level behaviors and group-

level patterns. In this paper, we briefly survey similarities

and differences in behavioral algorithms and aggregation

statistics among existing schooling models. We present

preliminary results of our efforts to develop a modeling
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framework that synthesizes much of this previous work, and

to identify relationships between behavioral parameters and

group-level statistics.

Types of Aggregations

Aggregation occurs in the smallest organisms bacte-

ria and the largest whales and spans virtually the en-

tire extant diversity of taxon, habitat, trophic level, life-

history strategy, degree of mobility, and many other

biological characteristics (Fairish and Edelstein-Keshet,

1999; Camazine et ai, 2001). Physical aggregation can be

regarded as part of a continuum in group integration. At one

end of this continuum are territorial animals with little need

to engage in information transfer and no need for group
structure. At the other end are highly integrated, long-term

associations between individuals that know and perhaps

are even related to other members of the group, and in

which members can potentially have high rates of direct and

indirect information exchange. Honeybee hives, cetacean

pods, and human communities are examples of these highly

integrated groups (Wilson, 1975). In these systems, estab-

lished pathways of long-term communication between

known individuals (clones, siblings, reciprocating group

members), or at predetermined locations (the hive, the calv-

ing grounds, the dinner table), may supplement immediate

sensory contact. Thus, the members remain part of the

"group" even while they range widely in space. In these

dispersed groups, coordinated function can be maintained as

long as the necessary information is transferred between

group members (<'.#., the sensory integration systems of

Morris and Schilt. 1988; Schilt and Morris, 1997). though

distance between interacting components inevitably affects

the evolution and stability of emergent group properties

(Hillier and Hanson, 1990; Latane et al., 1995).
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Between these extremes of group integration are what

could he considered "prototypical" animal aggregations

herds, swarms, flocks, and schools. Within the fishes, over

50% of species school that is. display synchronous and

coordinated movement at some point in their life histories

(Shaw, 1978), and an unknown additional number aggregate

more coarsely. Prototypical aggregations exhibit coordi-

nated motion, but group members are generally unrelated

and never develop lasting relationships (in the game-theo-

retic, "tit-for-tat" sense) with other members. Many of these

groups are extremely large (e.g.. a school ot a billion

herring). Individuals in such groups interact with a neigh-

borhood of other members, but those may represent a van-

ishingly small fraction of the group as a whole. This sug-

gests that mechanisms which maximize information transfer

among individuals could be evolutionarily beneficial. One

example of this is a repeated arrangement within the group.

reminiscent of crystal lattices, in which individuals assume

preferred positions and orientations relative to their neigh-

bors. Such arrangements could, for example, maximize sen-

sory contact between members in such as way as to reflect

ambient conditions, and the organisms' predominant sen-

sory systems, morphology, etc. (Parrish. 1992; Parrish and

Edelstein-Keshet, 2000).

We can characterize possible behavioral adaptations in

members of these groups on at least two levels: ( 1 ) short-

term reactions to modify position with respect to immediate

neighbors; and (2) behavioral responses that do not neces-

sarily improve position relative to immediate neighbors but

that contribute to group-level characteristics that ultimately

benefit the individual by benefiting the group. These group-

level adaptations are among the most fascinating and the

most difficult to assess aspects of animal aggregations.

Pattern versus Function

Human perception tends to recognize attributes of the

whole: an even density profile, polarity, distinct edges, or

specific shape. While it is tempting to assume that conspic-

uous features of biological aggregations are somehow ben-

eficial, the existence of qualitatively similar patterns that

arise from physical phenomena shows that this need not be

the case. For example, some shapes found in three-dimen-

sional schools (e.g., torus and funnel) are echoed in two-

dimensional insect configurations (e.g.. wheel), suggesting

that such shapes may be adaptive for group members (Fig.

1). However, these patterns could be evolutionarily neutral,

or even pathological. Virtually identical shapes can be

found in a wide range of inanimate aggregations, from water

vapor to planets, in which these patterns arise from simple

abiotic interactions between individual components, in the

absence of evolutionary dynamics. Key steps in understand-

ing biological aggregations in nature must be to distinguish

biologically relevant features from nonadaptive epiphenom-

ena, and to more explicitly and mechanistically describe the

links between individual behaviors and group pattern.

Dynamic patterns and movement are necessary charac-

teristics of many biological aggregations, and are perhaps

better criteria to distinguish adaptive responses from epi-

phenomena. For example, tish schools display complex

emergent properties such as coordinated motion and di-

rected activity. Compression, hourglass, vacuole. fountain,

and flash expansion (Fig. 2; Pitcher and Parrish, 1993) are

all maneuvers that minimize predatory risk only if all mem-
bers perform them correctly (e.g.. Fairish, 1989). Parabolic

formations in tuna schools may allow cooperative hunting

advantages (Partridge ct ai. 1983). These emergent group

properties appear to have readily apparent biological inter-

pretations, and physical analogs may be harder to find.

However, these dynamic group properties clearly confer

more evolutionary advantages under some circumstances

than others (e.g.. evading small predators that target indi-

viduals while becoming targets for large predators that

target groups; Parrish. 1993). Furthermore, the key evolu-

tionary question remains: do these behaviors involve trade-

offs between short-term gain for the individual and long-

term functioning of the group? If so, what is the

evolutionary context in which selection for these behaviors

occurs?

Traffic Rules

Assuming structure is advantageous, how is it main-

tained? Laboratory and field attempts to address this ques-

tion in fish schools have been limited (Partridge and Pitcher.

1980; Aoki el ai. 1986; Parrish and Turchin, 1997). in part

because obtaining three-dimensional trajectories on specific

individuals for a relevant period of time is difficult. Data

that do exist are typically from highly artificial conditions

(e.g.. relatively small schools in highly lit still-water tanks;

Parrish and Turchin, 1997). Three-dimensional tracking

techniques have not yet advanced to the stage where it is

feasible to observe large schools (i.e., over 10), in three

dimensions, over long times (i.e.. for more than seconds).

Despite these difficulties, quantitatively accurate observa-

tions of fish behavior within schools will undoubtedly be-

come available in the next few years. However, while those

data will provide a means of assessing short-term behavioral

responses by fish to neighbors within a group, they will not

by themselves provide the strong linkage between individ-

ual and group characteristics that we require to understand

the mechanics and evolution of schooling behaviors.

Making this linkage requires an additional approach,

namely, mathematical or computational models of school-

ing behavior. These models posit a specific, quantitative set

of behavioral interactions essentially, they create a set of

traffic rules and quantitatively assess the emergent prop-

erties of the resulting schools. Ideally, both the inputs (i.e..
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Figure 1. Three- and two-dimensional expressions of emergent structure in animate and inanimate aggre-

gations whorl patterns. Left: tornado structure in fish (top) and water vapor (bottom). Middle and right: whorl

and toroid in planets, tish. ants, and water vapor, clockwise from top left. Top left reprinted with permission by

FPG; bottom left courtesy of National Severe Storm Laboratory; middle top and bottom courtesy of National

Aeronautic Space Administration; top right taken by Norbert Wu. www.norbertwu.com 1999; bottom right

taken by T. Schneirla and reprinted with permission by W. H. Freeman & Company.

individuals' responses to neighbors) and model output

(group-level characteristics) can be compared to data from

real aggregations.

A key puipose of modeling is to distinguish behavioral

cause from organizational effect by studying the conse-

quences of various hypothetical social interaction rules.

Most simulation models of animal aggregations in the lit-

erature assign a set of forces that act on the speed and

direction of each individual and are modulated in response

to other individuals or the local environment. Typical force

components include locomotory (e.g., biomechanical forces

such as drag), aggregative (e.g.. long-range attraction, short-

range repulsion), arrayal (e.g., velocity matching), and ran-

dom (e.g., individual stochasticity; Griinbaum and Okubo.

1994). The detailed biomechanics of locomotory forces are

usually not considered in fish schooling simulations. In-

stead, most simulations simply associate behavioral move-

ment "decisions" with the movements that result. However,

there are exceptions, notably a few modeling studies that

specifically address hydrodynamic interactions between

members of a school (e.g., Weihs, 1973).

Published modeling studies have for the most part ad-

dressed a relatively restricted range of behavioral algo-

rithms. Most analyses focus on variation in one of three

categories: behavioral matching, positional preference, and

numerical preference.

Behavioral matching (aka allelomimesis: Deneubourg

and Goss, 1989) occurs when the individual agents try to

match their behavior with other nearby agents. Most often,

behavioral matching is modeled by having each agent ex-

plicitly match its orientation with that of its nearby neigh-

bors (e.g., a zone of parallel orientation: Aoki. 1982: Huth

and Wissel, 1992: Dill ct <//., 1997; Table 1, Fig. 3). Less

often, fish match their speed, either to that of their compan-

ions, or to some arbitrarily decided value (e.g., Romey,

1996; Vabo and N0ttestad, 1997).

Positional preference refers to each fish having a pre-

ferred position relative to one or more of its companions.
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Figure 2. Examples of coordinated movement and directed activity, both emergent properties of fish

schools, which are also commonly cited defense tactics against predatory attack. Fig. 12.8. from Pitcher and

Fairish 1993. Reprinted with permission from the author and Kluwer Academic Publishers.

Usually, positional preference is formulated as a preferred

distance to one or more nearest neighbor(s). Variations on

positional preference include assigned distance zones (e.g.,

repulsion, parallel orientation, attraction, searching) within

which neighbors are treated equally (Huth and Wissel,

1992; Stocker, 1999) or continuous distance weighting

(Warburton and Lazarus, 1991: Reuter and Breckling, 1994;

Romey, 1996). In some models, other positional parameters

influence responses, such as bearing angle to neighbors, or

estimated collision time (Dill el al., 1997). The biological

underpinning is obvious: that individual group members do

not collide, that groups do not dissolve, and that stragglers

join. Taken together, behavioral matching and positional

preference describe what a fish should do, e.g., move to-

wards or away from neighbors, align with neighbors, search

for neighbors (Fig. 3; RPOAdependence. Table 1 ), and how

much consideration it should give any neighbor in the

perception field (neighbor scaling rule. Table 1 ).

Numerical preference refers to the number of neighbors

to which a fish pays attention, which we generically refer to

as the rule size. Variations include an a priori value (e.g.. 4:

Warburton and Lazarus, 1991) or a conditional value (e.g..

choose up to 4 in the nearest zone: Aoki. 1982; choose up
to 4, front prioritized: Huth and Wissel. 1992). Many simply

have each fish average over all other fish (e.g.. all visible:

Reuter and Breckling, 1994; Vab0 and N0ttestad. 1997: all

fish: Romey, 1996).

In general, modeling studies of schooling have been

limited in several important respects, which future studies

should aim to improve upon. Most models have used a

relatively small population (e.g., 8 to 20 fish; Table 1),

despite the fact that several studies point out that small

numbers of fish may produce artificial results (e.g., Romey,

1996). Most models have operated in two dimensions. Al-

though this may be justified on the basis of computational

resources, generalizing from two to three dimensions may
not be straightforward. Many models include some stochas-

tic or chaotic elements: however, the degree of replication in

modeling studies is generally lower than ideal to character-

ize the frequency distributions of possible outcomes.

Most simulation studies also assume that all individuals

are identical. Romey (1996) has shown that the inclusion of

a single fish with different traffic rules will alter schooling

(measured as group speed and turning rate). Furthermore,

the inclusion of multiple agents with one of two rule sets

produces sorting (Romey, 1996), which may translate into

emergent properties (e.g., horizontal bands versus extended

columns of ungulates. Gueron el a/.. 1496). The possibility

that variability within the group may not only affect emer-

gent properties such as coordinated movement and spatial

pattern, but may also itself be an emergent property, clearly

deserves further consideration in modeling studies.

The parameter space explored by each model is typically

only a small subset of possible variations, which ideally

would include variations in (at least): initial position and

velocity; the strength and type of stochastic components;

spatial distribution of repulsion, parallel orientation, and

attraction; and degree of variation between individuals in a

group (Table 1 ). Because most studies are not consistent in
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Table 1

Siininiiiry offish school simulation parameters and output variables. R/PO/A-sequential zones of repulsion, parallel orientation (variably used), and

attraction \\here "zone" implies equal force within a proscribed area (see Figure 3). Direction matching implies the use of a zone of parallel

orientation. All other definitions as in the text. Numbers in parentheses refer to footnotes.

Reference

Population

Size Starting Orientation Velocity

R/PO/A

Dependence

Direction

Matching? Neighbor Scaling Rule Size

Aoki (1982. 1984) 8,32

Warburton & Lazarus 2-9

(1991)

Huth & Wissel 8

(1990. 1992. 1994)

Reuter & Breckling 10.20.30,

1 1 994 1 40, 50

Random position & Random Zone (I, 2)

orientation within

bounded area

Regular square lattice Not specified Linear distance

Romey (1996) 2-10

Vab0 & Nottestad 900

(1997)

Stocker (1999) 12.64

Random position & Random

orientation in fixed

area

Random position. Not clear

orientation &

speed within

bounded area

Random position & Constant

orientation within

bounded area (5)

Random position & Constant

orientation within

bounded & fixed

areas

Random position & Constant

orientation within

bounded area

Zone ( 1 )

Linear distance

Linear distance

Discrete distance

Zone ( 1 )

Yes Position, weighted by Up to 4

front priority

No Constant 1-8

Yes Constant; Single Up to 4, front

choice (4) prioritized

Yes Distance-weighted All visible

average (1/D; l/D')

No Constant All

No Single choice (7) All visible

Yes Constant Variable (8)

Reference
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Table 2

Aggregation indices at the individual, group, or population level iiteil ti> cva/iiute truffle rule-, in nur .\iniiilution

Index
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RandomForce Drag A/R function Neighbor Rule Size

Low High Convex Scaling 4

(High) (Low) (Piecewlse Logistic (16)

linear) (Constant)

Curvature
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portance of this distinction is that emergent properties may
be closely tied to indirect behavioral adaptations, which

benefit individuals by benefiting the group. To satisfy the

definition of emergent properties, the larger system (the

group) must possess them, while its components (the indi-

vidual members) do not (Clark ft nl.. 1997). To a large

extent, designating a group characteristic as "emergent" or

not is a matter of degree. For instance, models in which

individuals actively align their directions to those of neigh-

bors typically produce polarized groups (Huth and Wissel,

1992, 1994; Renter and Breckling. 1994; Stocker, 1999),

but this is probably too direct an outcome of the assump-
tions to be considered an emergent property. Dill ft al.

( 1997) pose a model in which each fish estimates its time to

impact with other fish. In such a system, agents implicitly

consider their neighbors' orientation, velocity, and position,

rather than explicitly doing so. Collision avoidance would

therefore seem to be a direct outcome and not an emergent

property of this model. However, what about the converse:

is polarization an emergent property of collision-avoidance

behavior?

From a biological perspective, an operational distinction

might be to consider whether the group behavior benefits

the members because of their memhership. For example,

Grunbaum (1998) used model results to suggest that when

individuals simultaneously display gradient-climbing and

alignment behaviors in a noisy environment, groups to

which they belong more accurately climb environmental

gradients, whereas loners can not. If displaying both behav-

iors is costly to an individual, but it nonetheless benefits by

being part of a group in a better environment, this would

qualify as emergent under this criterion.

Given the relatively underdeveloped state of schooling

behavior models and observations that unify individual,

group, and population characteristics, it is unavoidable that

studies of the evolutionary "hows and whys" of schooling

remain somewhat speculative and oversimplified. Nonethe-

less, several studies have attempted to incorporate evolu-

tionary ideas into schooling models by allowing iterative

improvement of parameters, using an objective function as

an analog to "fitness" in the evolutionary sense (Huse and

Gjoesaete, 1999; Bonabeau et til., 2000). For instance, Hira-

matsu et al. (2000) link a standard simulation of schooling

(a la Huth and Wissel. 1992) to a genetic algorithm that

selects the width of the parallel orientation zone, the size of

the blind angle, the number of influential neighbors, and the

neighbor scaling rule (front, side, or distance priority, ran-

dom choice) to maximize fitness. In this case, fitness is

modeled as the minimization of four output variables: near-

est neighbor distance, polarization, expanse, and fractal

dimension. As a result, parallel orientation zone is maxi-

mized and blind angle is minimized. A larger question is

whether this definition of most fit that is. least vari-

able is correct?

Simulation studies like these hinge directly on two ques-

tions (1) what is optimal, and (2) what is the relationship

between individual and group optimality? Such questions

are certain not to have simple or universal answers. It is

unlikely that we will soon attain complete, realistic models

of an aggregating organism's life history that would allow

us to truly represent "fitness" in a population with evolving

behaviors. However, we are optimistic about the role of

schooling simulations in addressing two central issues

raised in this paper. First, we believe model studies will be

successful in elucidating the mechanistic relationships be-

tween individual-level behavior and the group-level spatial

patterns they produce. Second, we expect that the combi-

nation of explicit observations of schooling fish, improved
simulations of the observed behaviors, and expanded use of

statistical indices of aggregation on real and model aggre-

gations will prove sufficient to identify the true behavioral

algorithms used by fish.
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